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In Escherichia coli, the marRAB operon is a determinant for antibiotic resistance. Such
phenotypes require the encoded transcription factor MarA that activates efflux pump
expression. To better understand all genes controlled by MarA, we recently mapped
binding of the regulator across the E. coli genome. As expected, many MarA targets were
adjacent to genes encoding stress response systems. Surprisingly, one MarA-binding
site overlapped the lac operon regulatory region. Here, we show that MarA specifically
targets this locus and can block transcription of the lac genes. Repression is mediated by
binding of MarA to a site overlapping the lacP1 promoter −35 element. Control of the lac
operon by MarA does not impact antibiotic resistance.

Introduction
The Escherichia coli multiple antibiotic resistance (mar) locus provides resistance to tetracyclines, qui-
nolones, β-lactams and a range of phenolic compounds [1–3]. These resistance phenotypes require
marA that encodes a transcriptional activator [4,5]. A key role of MarA is to activate expression of the
acrAB-tolC encoded efflux pump [3,6,7]. Hence, toxic molecules are removed from cells as a conse-
quence of MarA production. Like all members of the AraC/XylS family, MarA binds asymmetric
DNA sequences using two helix-turn-helix DNA-binding motifs [5]. The consensus DNA sequence
for MarA binding is called the ‘marbox’. Such sequences usually occur upstream of promoters and
stimulate transcription [8]. Depending on the position and orientation of the marbox, promoters acti-
vated by MarA are classified into two groups. Class I promoters usually contain a marbox in the
reverse orientation ∼60 base pairs upstream of the transcription start site [8]. At class II promoters
the marbox is in the forward orientation that overlaps the promoter −35 element [8]. A few promo-
ters, repressed by MarA, have a marbox overlapping the −35 element in the reverse orientation [9].
Recently, we mapped the binding of MarA to sites across the E. coli genome [10]. We identified

over 30 loci interacting with MarA. In most cases, these were regulatory regions of known stress
response genes. However, we were surprised that MarA also bound upstream of the lac operon.
Regulated by the cAMP receptor protein (CRP) and lac repressor, the operon is required for lactose
metabolism [11]. Hence, on binding allolactose, the lac repressor undergoes a conformational change
and disassociates from its DNA target sites (lac operators). If this is concomitant with glucose starva-
tion, CRP activates transcription of the lac operon from the lacP1 promoter [11]. Given that there is
no obvious link between the lac locus and antibiotic resistance, we sought to understand the role of
MarA. We show that the lac operon is subject to repression by MarA and that this requires a reverse
orientation marbox overlapping the lacP1 −35 element. This regulation does not impact the ability of
E. coli to resist antimicrobial compounds.
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Figure 1. Binding of MarA to the lacZYA intergenic region.

(a) Sequence of 202 bp the lac operon regulatory DNA fragment used in this work. The lacP1 promoter −10 and −35 elements

are boxed and the corresponding transcription start site is indicated by a bent arrow. The promoter is activated by binding of

CRP to its target highlighted in orange. Binding sites for the lac repressor, lacO3, and lacO1 are in bold type face and

underlined, while the lacZ start codon is bold and in italics. The proposed marbox is highlighted green and orientation is

indicated by a green arrow. Mutations made to the marbox are shown in red and the consensus marbox sequence is in blue: R

= a or g, W = a or T, D = a, g or t. Oligonucleotide lacP-F (50-atgctagaattcaccgcctctccccgcgcgtt-30) was used with lacP-R

(50-tcgatcaagcttcatagctgtttcctgtgtgaaat-30) or lacPM-R (50-tcgatcaagcttcatagctgtttcctgtgtgaaattgttat
ccgctcacaattccacacaacatacgagccggaacgatacagtgtaaagcctggggtgc-30) to generate DNA fragments, encoding variants of lac

operon regulatory region, flanked by EcoRI and HindIII restriction sites. The DNA fragments were cloned in plasmid pRW50 [18]

or pSR [19] as required. (b) Binding of MarA to the lac operon intergenic region in vitro requires the predicted marbox. The

results of EMSAs, using the wild-type or mutated 202 bp DNA fragment, are shown. Where present, MarA was used at

concentrations of 0.05, 0.1, 0.2, 0.4, or 0.6 μM. The position to which the free DNA fragment, or DNA in complex with MarA,

migrates during electrophoresis is indicated. Assays were done as described previously [20,21]. MarA protein was purified as

described by Kettles [22]. Briefly, DNA fragments were generated by PCR amplification from an E. coli genomic DNA template.

Following purification, PCR products were cut with HindIII and EcoRI prior to being end-labelled with [γ-32P]-ATP and

polynucleotide kinase. The DNA fragments were incubated with MarA in buffer containing 20 mM Tris pH 7,10 mM MgCl2,

100 mM EDTA, 120 mM KCl. Reactions were analysed by electrophoresis through a 5% polyacrylamide gel. Raw gel images

are shown in Figure S1.
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Mara binds specifically to a marbox at the lac operon regulatory region
The E. coli lac operon encodes genes required for the metabolism of lactose [11]. Transcription of the operon
is blocked by the lac repressor protein due to binding at the O1 and O3 operator sites. This repression is
relieved in the presence of allolactose (a metabolic precursor of lactose) or non-hydrolysable β-galactosides
such as isopropyl β-D-1-thiogalactopyranoside (IPTG) [11]. Transcription of the operon is driven from the
lacP1 promoter. This is activated in response to glucose starvation by CRP [11]. In previous work, we used
chromatin immunoprecipitation, coupled with DNA sequencing, to map the biding of MarA across the E. coli
chromosome [10]. To our surprise, MarA bound the intergenic region adjacent to the lac operon. The sequence
of the region is shown in Figure 1a. The lac operators, lacP1 promoter, and predicted marbox, are highlighted.
Our first goal was to determine if MarA indeed bound the inferred site. To facilitate this, we generated a
202 bp DNA fragment encompassing the sequencing shown in Figure 1a. We also made derivatives of the
DNA with mutations in key positions of the predicted MarA target site. The mutations, designed to avoid alter-
ing the promoter −35 element, are shown in red above the wild-type DNA sequence in Figure 1a. The consen-
sus marbox sequence is also shown for comparison (blue). We tested the binding of MarA to the DNA
fragments using electrophoretic mobility shift assays (EMSAs). The results are shown in Figure 1b. Mutation of
the marbox reduced MarA binding to the DNA fragment.

Mutation of the marbox does not alter lacZYA promoter activity
We reasoned that mutations we had made could inadvertently impact lacP1 promoter activity. To test this, we
cloned the 202 bp DNA fragment, or the mutated derivative, upstream of the λoop terminator in plasmid pSR.
Purified plasmid derivatives where then used as templates for in vitro transcription. The results of the

a b

Figure 2. Mutation of the marbox upstream of lacZYA does not basal lacP1 activity.

(a) Activation of the lacP1 promoter by CRP. The figure shows results of in vitro transcription assays using the wild-type or

mutated 202 bp lac regulatory DNA fragment cloned in plasmid pSR [19]. RNA polymerase was used at a concentration of

0.4 μM and CRP at a concentration of 1 μM. The transcripts generated from lacP1 are labelled and the RNAI transcript is

generated from the plasmid replication origin. Preparations of σ70 were made as described by Grainger et al. [23]. The RNA

polymerase core enzyme was purchased from NEB. The RNA polymerase holoenzyme was generated by incubating the core

enzyme with a 4-fold excess of σ-factor at room temperature for 20 min prior to use. CRP was purified according to the

protocol of Savery et al. [24]. The in vitro transcription experiments were done using a procedure similar to that described in

prior work [21] using the system of Kolb et al. [19]. Labelled RNA products were analysed on a denaturing polyacrylamide gel.

Raw gel images are shown in Figure S1. (b) The graph shows levels of β-galactosidase activity measured in lysates of the lac−
E. coli strain T7 Express (NEB) carrying different promoter::lacZ fusions in plasmid pRW50 [18]. Cultures in LB media were

grown to exponential phase in the presence or absence of 1 mM IPTG as indicated. When the culture reached mid-exponential

phase, the cells were lysed and β-galactosidase levels were measured by the Miller method [25]. Activities are the average of

three or more independent experiments. Error bars indicate the standard deviation of three independent experimental

replicates. P was determined using a two-tailed Student’s t-test.
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experiment are shown in Figure 2a. The smaller RNAI transcript is derived from the plasmid replication origin
and serves as a control. In the absence of CRP, transcription from lacP1 was undetectable (lane 1). This was
unchanged upon mutation of the marbox (compare lanes 1 and 3). Addition of CRP stimulated transcription
(lane 2). The lacP1 promoter generated a transcript of 129 nt and 126 nt in length. This is consistent with pre-
vious reports regarding alternative transcription start sites at lacP1 [11]. We did not detect transcription from
any of the ambiguous ‘promoter-like’ sequences in the lac regulatory region [11]. Importantly, activation of
lacP1 was not impaired by the marbox mutations (lane 4). In parallel experiments, we also cloned the regula-
tory DNA fragments in plasmid pRW50 to generate a promoter::lacZ fusions. In subsequent β-galactosidase
assays, the two promoter derivatives had indistinguishable properties (Figure 2b). Hence, the wild-type and
mutated versions of the lac regulatory region differ only with respect to their ability to bind MarA.

Repression of lacZYA expression by MarA requires the marbox
The identified marbox overlaps the lacP1 −35 hexamer in the reverse orientation (Figure 1a). Hence, both the
position and orientation of the marbox suggest repression by MarA at this locus [9]. To check this, we utilised

Figure 3. Expression of MarA inhibits induction of the lac operon in a marbox-dependent manner.

The graph shows levels of β-galactosidase activity measured in lysates of E. coli strain T7 Express. The cells contained either

empty pET28a or pET28a-MarA, in combination with different promoter::lacZ fusions in plasmid pRW50 [18,23]. Cultures in LB

media were grown to exponential phase in the presence or absence of 1 mM IPTG. Error bars indicate the standard deviation

of three independent experimental replicates. P was determined using a two-tailed Student’s t-test.

Table 1 MICs of different antibiotics in the presence and absence
of lac operon expression

Drug*

MG1655 JCB387

−IPTG +IPTG† −IPTG +IPTG†

Ampicillin 5 5 5 5

Chloramphenicol 4 6 3 5

Doxycycline 2 2 1.5 2

Kanamycin 3 6 6 6

Tetracycline 2.5 2.5 1.5 1.5

Ciprofloxacin 0.024 0.024 0.020 0.016

*The MIC value determined for each drug is in mg/l.
†IPTG was added to a final concentration of 1 mM. Values shown are the average of
two independent experiments.
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plasmid pET28a and a derivative encoding MarA. The plasmids were used to co-transform lac− E. coli T7
express with the pRW50 derivatives described above. The various permutations are indicated below the graph
in Figure 3. Note that, for these strains, the addition of IPTG has the potential to simultaneously induce tran-
scription from lacP1 and expression of MarA from pET28a. We monitored the effects of IPTG addition by
measuring β-galactosidase activity in lysates of the various cultures. The data for the wild-type 202 bp DNA
fragment are shown in Figure 3 (first four bars). Strikingly, high β-galactosidase activity could only be detected
in the presence of IPTG and the absence of pET28a encoded MarA. The most likely explanation is that MarA,
expressed from pET28a-MarA, binds the marbox and represses lacP1. Consistent with this, in the context of
the mutated marbox, IPTG significantly enhanced β-galactosidase activity in both the presence and absence of
MarA (Figure 3, final four bars). Hence, the effect of MarA on lacP1 transcription requires the marbox. We
note that IPTG induction of lacP1, overlapping the mutated marbox, in the presence of MarA, was only partial
(Figure 3, final two bars). This is most likely due to residual MarA binding. Indeed, weak binding to the
mutated marbox was evident at high MarA concentrations in our EMSA assays (Figure 1b).

Expression of the lacZYA operon does not alter the minimum inhibitory
concentration of common antibiotics
Regulation by MarA hints that expression of the lac operon might have unexpected effects on the ability of E.
coli to grow in the presence of antibiotics. For example, it is conceivable that the lac permease, encoded by
lacY, could inadvertently allow harmful compounds to enter the cell in some circumstances. To investigate pos-
sible effects, we determined the minimum inhibitory concentration (MIC) of common antibiotics in the pres-
ence and absence of IPTG. Experiments were done with E. coli strain MG1655 (lac+) or JCB387 (lac−) [12,13]
as described by Sharma et al. [10] according to the protocol of Wiegand et al. [14]. Results were only accepted
if the observed MIC for the control ATCC E. coli 25922 strain [15] was within one doubling dilution of the
expected result. The results are shown in Table 1. Addition of IPTG did not alter the MIC for any of the anti-
biotics tested in either strain.

Perspectives
The position and orientation of the marbox overlapping lacP1 resemble that observed at other MarA repressed
promoters [9]. However, there are notable differences. For example, assuming a reverse marbox consensus of
50-tttRRcaWWWWDtgc-30, the purA marbox extends from promoter position -36 to −50, while the hdeAB
marbox extends from −31 to −45 [9]. Thus, in both cases, only partial overlap exists between the marbox and
promoter −35 hexamer. In the case of lacP1, the marbox extends from -23 to −37 and completely overlaps the
−35 element. We suggest that MarA can repress transcription from multiple positions at target promoters. This

Figure 4. Schematic representation of lac operon regulation by the lac repressor, CRP, and MarA.

The lacP1 promoter is shown as a bent arrow. Genes within the lac operon are block arrows labelled lacZ, Y, and A. Binding

sites for transcription factors are shown as boxes and labelled accordingly. The cyclic AMP receptor protein (CRP) activates

lacP1 in response to elevated cAMP levels (orange pathway). In the absence of allolactose, the lac repressor blocks operon

expression (black pathway). The multiple antibiotic resistance activator protein (MarA) can also repress lacP1 activity (green

pathway).
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contrasts with transcription activation by MarA that requires precise positioning of the regulator [8]. Overall,
our observations suggest reduced expression of the lac operon could be beneficial in conditions where marA is
expressed. For instance, this may represent a mechanism to prevent the expression of metabolic enzymes when
growth is inhibited. However, it is not clear why the lac operon should be singled out for such regulation.
Alternatively, the lac locus marbox may be an evolutionary relic awaiting resolution. Regardless of the under-
lying reasons, it is clear many gene regulatory proteins bind unexpected targets [16,17]. The interaction we
have identified here is a further example of this phenomenon. In summary, MarA is an unexpected regulator of
the lac operon and acts in addition to the known factors CRP and lac repressor (Figure 4).

Abbreviations
CRP, cAMP receptor protein; EMSAs, electrophoretic mobility shift assays; IPTG, isopropyl
β-D-1-thiogalactopyranoside; MIC, minimum inhibitory concentration.
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