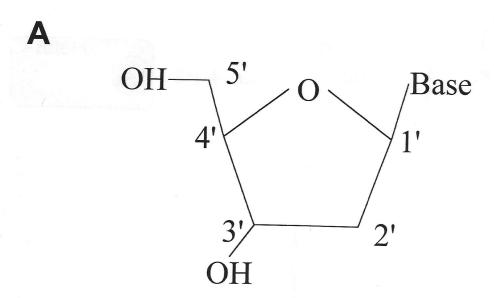
was 1 x TBE. Loading buffer containing bromophenol blue was run in an unused lane as a marker of the progress of the gel. The samples were electrophoresed at 80 V (\sim 13 V/cm) for 2.5 hours, after which time the plates were dismantled and the gel dried. The gel was exposed to autoradiograph film overnight at -70° C and the film developed the following day.


2.18.2 Assays with MelR and RNAP α subunits

Purified RNAP α subunits, used at a concentration of 4 μ M, were pre-bound to DNA fragments, for 10-15 minutes at room temperature, before the addition of MelR. When investigating the effect of RNAP α subunits on the binding of MelR to the DNA, reactions lacking α subunits contained the appropriate volume of α storage buffer.

2.19 FeBABE footprinting

The hydroxyl radical is a reactive oxygen species that mediates DNA strand breakage by the abstraction of a deoxyribose hydrogen atom from the DNA backbone. Consequently, hydroxyl radical-mediated DNA cleavage is non-sequence specific. The deoxyribose C'4-H and C'5-H bonds, which can only be accessed via the minor groove of the DNA, are the primary sites of hydroxyl radical-mediated strand breakage (Balasubramanian *et al.*, 1998; Figure 2.2). Since the hydroxyl radical can access each nucleotide of a given DNA fragment, with no bias towards particular DNA sequences, strand breaks induced by the hydroxyl radical form the basis of a variety of footprinting techniques used to study the structure of protein-DNA complexes at single nucleotide resolution.

The Fe²⁺ ion can catalyse the formation of hydroxyl radicals from H_2O_2 in a process referred to as the Fenton reaction. This reaction has been exploited to generate hydroxyl radicals in DNA footprinting experiments. The recent development of Fe²⁺ tethering reagents, such as p-bromoacetamidobenzyl-EDTA-Fe (FeBABE), has enabled researchers to exploit the Fenton reaction even further (Owens $et\ al.$, 1998; Ishihama, 2000b). FeBABE can be conjugated with proteins, via surface exposed cysteine residues, to form a stable derivative of the starting protein molecule that is capable of generating hydroxyl radicals in the presence of H_2O_2 (Figure 2.3). Crucially, as the Fe²⁺ ion is tethered to the protein, hydroxyl radical generation is localised to the site of FeBABE attachment. Thus, only a small surface of the DNA is subject to strand

B

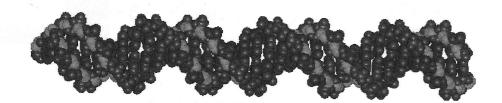


Figure 2.2 Sites of hydroxyl radical DNA strand breakage.

- A) Numbering scheme for the carbon atoms of deoxyribose.
- B) Location of 4' and 5' deoxyribose carbon atoms (red) in double stranded DNA.

Figure 2.3 Conjugation of FeBABE with a surface exposed Cysteine residue

breakage. Consequently, FeBABE footprinting is a particularly suitable technique for mapping interactions between a discrete surface of a protein molecule and its DNA target.

2.19.1 Reactions with MelR

FeBABE footprinting was used as a method for studying the interaction of MelR with each of its DNA target sites. Cocktails were set up containing 2 μ l of 400 nM radiolabelled fragment and 198 μ l binding buffer (binding buffer contained 2 mM cAMP or 10 mM melibiose when required). 20 μ l aliquots of this cocktail were distributed into Eppendorf tubes. MelR was added to final concentration 0.1-0.8 μ M and the total reaction volume made up to 40 μ l with sterile water. After gentle mixing, the reaction was incubated for 10 minutes at room temperature.

After incubation, 5 μ l of H_2O_2 and 5 μ l of NaAscorbate was added directly to samples and mixed by gentle stirring with the pipette tip. After an incubation time of 20 minutes at 37 °C, reactions were stopped by adding 21 μ l of stop solution and mixing well. The reaction volume was then made up to 200 μ l with TE and the DNA extracted with 200 μ l phenol/chloroform. The aqueous layer (190 μ l) was transferred to a fresh Eppendorf tube taking care not to disturb the protein layer at the interface. 1 μ l of 20 mg/ml glycogen was then added together with 400 μ l ice-cold ethanol and the solutions incubated at -70 °C for 15 minutes. The DNA was pelleted by centrifugation in a microcentrifuge for 15 minutes at 4 °C and the supernatant discarded. After washing, the pellet with 600 μ l of cold 70 % ethanol and recentrifuging for 10 minutes, the supernatant was discarded again and the pellet dried under vacuum. Finally, the pellet was resuspended in 8 μ l DNase loading buffer, often by incubating the samples for 10 minutes at 37 °C. Then samples were incubated for 2 minutes at 90 °C and loaded onto a 6 % sequencing gel which was run at 60 W. After electrophoresis, the gel plates were dismantled and the gel fixed and dried. The gel was exposed to a phosphor screen overnight at room temperature.

2.19.2 Reactions with MelR and RNAP α subunits

Purified RNAP α subunits, used at a concentration of 4 μ M, were pre-bound to DNA fragments for 10-15 minutes at room temperature, before the addition of MelR. When investigating the effect of RNAP α subunits on the binding of MelR to the DNA, reactions lacking α subunits contained the appropriate volume of α storage buffer.

Stock running gel buffer: 0.75 M Tris-HCl (pH 8.3). Filtered through Whatman 47 mm diameter glass fibre filter

Stock stacking gel buffer: 1.25 M Tris-HCl (pH 6.8). Filtered through Whatman 47 mm diameter glass fibre filter

Sample buffer: 0.005 % (w/v) bromophenol blue, 125 mM Tris-HCl (pH 6.8), 2 % (w/v) SDS, 20 % (v/v) glycerol

10 x Electrode buffer: 250 mM T-HCl (pH 8.3), 1.9 M glycine, 1 % (w/v) SDS

Stain solution: 0.2 % (w/v) Coomassie brilliant blue, 50 % (v/v) methanol, 10 % (v/v) acetic

acid. The solution was filtered through Whatman 47 mm diameter glass fibre filter

Destain solution: 10 % (v/v) methanol, 10 % (v/v) acetic acid

$2.1.9 \beta$ -galactosidase assays

Z buffer: 0.75 g/l KCl, 0.246 g/l MgSO₄, 8.53 g/l Na₂HPO₄, 4.87 g/l NaHPO₄.2H₂O, 2.7 ml/l β -mercaptoethanol, adjusted to pH 7

2.1.10 FeBABE footprints

Binding buffer: 60 mM Hepes (pH 8), 1.25 mM Potassium glutamate, 38 μ g/ml Herring sperm DNA, 0.7 % melibiose (when required)

Sodium Ascorbate: 5 mM Sodium Ascorbate made up immediately before use **Hydrogen peroxide:** 5 mM Hydrogen peroxide made up immediately before use

Stop solution: 0.15 mM EDTA, 25 mM Thiourea

Gel loading buffer: 40 % (v/v) deionised formamide, 5 M urea, 5 mM NaOH, 1 mM EDTA,

0.025~%~(w/v) bromophenol blue, 0.025~% xylene cyanol FF

2.1.11 FeBABE labelling of proteins

EDTA: 20 mM EDTA

FeBABE: 20 mM FeBABE

Triton-X-100: 1 % (v/v) solution of Triton-X-100 in sterile water

CPM: 1 % (v/v) solution of CPM in DMSF